3.24.78 \(\int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx\) [2378]

Optimal. Leaf size=79 \[ \frac {\tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c d^2-b d e+a e^2}} \]

[Out]

arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^2+b*x+a)^(1/2))/(a*e^2-b*d*e+c*d^2)^(1/2
)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {738, 212} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{\sqrt {a e^2-b d e+c d^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])]/Sqrt[c*d^2 - b*
d*e + a*e^2]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx &=-\left (2 \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x}{\sqrt {a+b x+c x^2}}\right )\right )\\ &=\frac {\tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c d^2-b d e+a e^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.32, size = 92, normalized size = 1.16 \begin {gather*} \frac {2 \sqrt {-c d^2+b d e-a e^2} \tan ^{-1}\left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+x (b+c x)}}{\sqrt {-c d^2+e (b d-a e)}}\right )}{c d^2+e (-b d+a e)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)*Sqrt[a + b*x + c*x^2]),x]

[Out]

(2*Sqrt[-(c*d^2) + b*d*e - a*e^2]*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a + x*(b + c*x)])/Sqrt[-(c*d^2) + e*(b*d
- a*e)]])/(c*d^2 + e*(-(b*d) + a*e))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(156\) vs. \(2(71)=142\).
time = 0.80, size = 157, normalized size = 1.99

method result size
default \(-\frac {\ln \left (\frac {\frac {2 e^{2} a -2 b d e +2 c \,d^{2}}{e^{2}}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e \sqrt {\frac {e^{2} a -b d e +c \,d^{2}}{e^{2}}}}\) \(157\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+1/e*(b*e-2*c*d)*(x+d/e)+2*((a*e^2-b*d*e+c*d
^2)/e^2)^(1/2)*(c*(x+d/e)^2+1/e*(b*e-2*c*d)*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d^2-%e*b*d+%e^2*a>0)', see `
assume?` for

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 157 vs. \(2 (73) = 146\).
time = 4.14, size = 340, normalized size = 4.30 \begin {gather*} \left [\frac {\log \left (-\frac {8 \, c^{2} d^{2} x^{2} + 8 \, b c d^{2} x + {\left (b^{2} + 4 \, a c\right )} d^{2} + 4 \, \sqrt {c d^{2} - b d e + a e^{2}} {\left (2 \, c d x + b d - {\left (b x + 2 \, a\right )} e\right )} \sqrt {c x^{2} + b x + a} + {\left (8 \, a b x + {\left (b^{2} + 4 \, a c\right )} x^{2} + 8 \, a^{2}\right )} e^{2} - 2 \, {\left (4 \, b c d x^{2} + 4 \, a b d + {\left (3 \, b^{2} + 4 \, a c\right )} d x\right )} e}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right )}{2 \, \sqrt {c d^{2} - b d e + a e^{2}}}, \frac {\sqrt {-c d^{2} + b d e - a e^{2}} \arctan \left (-\frac {\sqrt {-c d^{2} + b d e - a e^{2}} {\left (2 \, c d x + b d - {\left (b x + 2 \, a\right )} e\right )} \sqrt {c x^{2} + b x + a}}{2 \, {\left (c^{2} d^{2} x^{2} + b c d^{2} x + a c d^{2} + {\left (a c x^{2} + a b x + a^{2}\right )} e^{2} - {\left (b c d x^{2} + b^{2} d x + a b d\right )} e\right )}}\right )}{c d^{2} - b d e + a e^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-(8*c^2*d^2*x^2 + 8*b*c*d^2*x + (b^2 + 4*a*c)*d^2 + 4*sqrt(c*d^2 - b*d*e + a*e^2)*(2*c*d*x + b*d - (b
*x + 2*a)*e)*sqrt(c*x^2 + b*x + a) + (8*a*b*x + (b^2 + 4*a*c)*x^2 + 8*a^2)*e^2 - 2*(4*b*c*d*x^2 + 4*a*b*d + (3
*b^2 + 4*a*c)*d*x)*e)/(x^2*e^2 + 2*d*x*e + d^2))/sqrt(c*d^2 - b*d*e + a*e^2), sqrt(-c*d^2 + b*d*e - a*e^2)*arc
tan(-1/2*sqrt(-c*d^2 + b*d*e - a*e^2)*(2*c*d*x + b*d - (b*x + 2*a)*e)*sqrt(c*x^2 + b*x + a)/(c^2*d^2*x^2 + b*c
*d^2*x + a*c*d^2 + (a*c*x^2 + a*b*x + a^2)*e^2 - (b*c*d*x^2 + b^2*d*x + a*b*d)*e))/(c*d^2 - b*d*e + a*e^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (d + e x\right ) \sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/((d + e*x)*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [A]
time = 1.18, size = 72, normalized size = 0.91 \begin {gather*} \frac {2 \, \arctan \left (-\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + b x + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} + b d e - a e^{2}}}\right )}{\sqrt {-c d^{2} + b d e - a e^{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

2*arctan(-((sqrt(c)*x - sqrt(c*x^2 + b*x + a))*e + sqrt(c)*d)/sqrt(-c*d^2 + b*d*e - a*e^2))/sqrt(-c*d^2 + b*d*
e - a*e^2)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\left (d+e\,x\right )\,\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d + e*x)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/((d + e*x)*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________